Quantifying Explainability in Outcome-Oriented Predictive Process Monitoring

نویسندگان

چکیده

Abstract The growing interest in applying machine and deep learning algorithms an Outcome-Oriented Predictive Process Monitoring (OOPPM) context has recently fuelled a shift to use models from the explainable artificial intelligence (XAI) paradigm, field of study focused on creating explainability techniques top AI order legitimize predictions made. Nonetheless, most classification are evaluated primarily performance level, where XAI requires striking balance between either simple (e.g. linear regression) or using complex inference structures neural networks) with post-processing calculate feature importance. In this paper, comprehensive overview predictive varying intrinsic complexity measured based model-agnostic quantitative evaluation metrics. To end, is designed as symbiosis interpretability faithfulness thereby allowing compare inherently created explanations decision tree rules) post-hoc Shapley values) models. Moreover, two improved versions logistic regression model capable capturing non-linear interactions both generating their own proposed OOPPM context. These benchmarked common state-of-the-art explanation explainability-performance space.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outcome-Oriented Predictive Process Monitoring: Review and Benchmark

Predictive business process monitoring refers to the act of making predictions about the future state of ongoing cases of a business process, based on their incomplete execution traces and logs of historical (completed) traces. Motivated by the increasingly pervasive availability of fine-grained event data about business process executions, the problem of predictive process monitoring has recei...

متن کامل

Clustering-Based Predictive Process Monitoring

Business process enactment is generally supported by information systems that record data about process executions, which can be extracted as event logs. Predictive process monitoring is concerned with exploiting such event logs to predict how running (uncompleted) cases will unfold up to their completion. In this paper, we propose a predictive process monitoring framework for estimating the pr...

متن کامل

Temporal Stability in Predictive Process Monitoring

Predictive business process monitoring is concerned with the analysis of events produced during the execution of a business process in order to predict as early as possible the final outcome of an ongoing case. Traditionally, predictive process monitoring methods are optimized with respect to accuracy. However, in environments where users make decisions and take actions in response to the predi...

متن کامل

A Dashboard-based Predictive Process Monitoring Engine

Process monitoring forms an integral part of business process management. It involves activities in which process execution data are collected and analyzed to measure the process performance with respect to the performance objectives. Traditionally, process monitoring has been performed at runtime, providing a real-time overview of the process performance and identifying performance issues as t...

متن کامل

‏‎comprehension monitoring in l1&l2‎‏

هدف اصلی این تحقیق مقایسه و تمایز بین روشها و استراتژیهای خاص برای درک مطلب بهتر در زبان مادری و زبان دوم بوده است. در قدم اول میزان توانایی افراد در درک مطلب فارسی و انگلیسی اندازه گیری و سپس رده بندی شد. همچنین از دانش آموزان خواسته شد که در مورد روشها و استراتژیهایی که برای درک مطلب بهتر به کار برده بودند توضیح دهند. نتیجه این مرحله از تحقیق نشان داد که دانشجویان برای درک مطلب مطلوب در زبان ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture notes in business information processing

سال: 2022

ISSN: ['1865-1348', '1865-1356']

DOI: https://doi.org/10.1007/978-3-030-98581-3_15